How can we describe different types of dataset? Ten dataset archetypes

As a community, when we are discussing recommendations and best practices for how data should be published and governed, there is a natural tendency for people to focus on the types of data they are most familiar with working with.

This leads to suggestions that every dataset should have an API, for example. Or that every dataset should be available in bulk. While good general guidance, those approaches aren’t practical in every case. That’s because we also need to take into account a variety of other issues, including:

  • the characteristics of the dataset
  • the capabilities of the publishing organisation and the funding their have available
  • the purpose behind publishing the data
  • and the ethical, legal and social contexts in which it will be used

I’m not going to cover all of that in this blog post.

But it occurred to me that it might be useful to describe a set of dataset archetypes, that would function a bit like user personas. They might help us better answer some of the basic questions people have around data, discuss recommendations around best practices, inform workshop exercises or just test our assumptions.

To test this idea I’ve briefly described ten archetypes. For each one I’ve tried to describe some it’s features, identified some specific examples, and briefly outlined some of the challenges that might apply in providing sustainable access to it.

Like any characterisation detail is lost. This is not an exhaustive list. I haven’t attempted to list every possible variation based on size, format, timeliness, category, etc. But I’ve tried to capture a range that hopefully illustrate some different characteristics. The archetypes reflect my own experiences, you will have different thoughts and ideas. I’d love to read them.

The Study

The Study is a dataset that was collected to support a research project. The research group collected a variety of new data as part of conducting their study. The dataset is small, focused on a specific use case and there are no plans to maintain or update it further as the research group does not have any ongoing funded to collect or maintain the dataset. The data is provided as is for others to reuse, e.g. to confirm the original analysis of the data or to use it on other studies. To help others, and as part of writing some academic papers that reference the dataset, the research group has documented their methodology for collecting the data. The dataset is likely published in an academic data portal or alongside the academic papers that reference it.

Examples: water quality samples, field sightings of animals, laboratory experiment results, bibliographic data from a literature review, photos showing evidence of plant diseases, consumer research survey results

The Sensor Feed

The Sensor Feed is a stream of sensor readings that are produced by a collection of sensors that have been installed across a city. New readings are added to the stream at regular intervals. The feed is provided to allow a variety of applications to tap into the raw sensor readings.. The data points are as directly reported by the individual sensors and are not quality controlled. The individual sensors may been updated, re-calibrated or replaced over time. The readings are part of the operational infrastructure of the city so can be expected to be available over at least the medium term. This mean the dataset is effectively unbounded: new observations will continue to be reported until the infrastructure is decommissioned.

Examples: air quality readings, car park occupancy, footfall measurements, rain gauges, traffic light queuing counts, real-time bus locations

The Statistical Index

The Statistical Index is intended to provide insights into the performance of specific social or economic policies by measuring some aspect of a local community or economy. For example a sales or well-being index. The index draws on a variety of primary datasets, e.g. on commercial activities, which are then processed according to a documented methodology to generate the index. The Index is stewarded by an organisation and is expected to be available over the long term. The dataset is relatively small and is reported against specific geographic areas (e.g. from The Register) to support comparisons. The Index is updated on a regular basis, e.g. monthly or annually. Use of the data typically involves comparing across time and location at different levels of aggregation.

Examples: street safety survey, consumer price indices, happiness index, various national statistical indexes

The Register

The Register is a set of reference data that is useful for adding context to other datasets. It consists of a list of specific things, e.g. locations, cars, services with an unique identifier and some basic descriptive metadata for each of the entries on the list. The Register is relatively small, but may grow over time. It is stewarded by an organisation tasked with making the data available for others. The steward, or custodian, provides some guarantees around the quality of the data.  It is commonly used as a means to link, validate and enrich other datasets and is rarely used in isolation other than in reporting on changes to the size and composition of the register.

Examples: licensed pubs, registered doctors, lists of MOT stations, registered companies, a taxonomy of business types, a statistical geography, addresses

The Database

The Database is a copy or extract of the data that underpins a specific application or service. The database contains information about a variety of different types of things, e.g. musicians, the albums and songs. It is a relatively large dataset that can be used to perform a variety of different types of query and to support a variety of uses. As it is used in a live service it is regularly updated, undergoes a variety of quality checks, and is growing over time in both volume and scope. Some aspects of The Database may reference one or more Registers or could be considered as Registers in themselves.

Examples: geographic datasets that include a variety of different types of features (e.g. OpenStreetMap, MasterMap), databases of music (e.g. MusicBrainz) and books (e.g. OpenLibrary), company product and customer databases, Wikidata

The Description

The Description is a collection of a few data points relating to a single entity. Embedded into a single web page, it provides some basic information about an event, or place, or company. Individually it may be useful in context, e.g. to support a social interaction or application share. The owner of the website provides some data about the things that are discussed or featured on the website, but does not have access to a full dataset. The individual item descriptions are provided by website contributors using a CRM to add content to the website. If available in aggregate, the individual descriptions might make a useful Database or Register.

Examples: descriptions of jobs, events, stores, video content, articles

The Personal Records

The Personal Records are a history of the interactions of a single person with a product or service. The data provides insight into the individual person’s activities.  The data is a slice of a larger Dataset that contains data for a larger number of people. As the information contains personal information it has to be secure and the individual has various rights over the collection and use of the data as granted by GDPR (or similar local regulation). The dataset is relatively small, is focused on a specific set of interactions, but is growing over time. Analysing the data might provide useful insight to the individual that may help them change their behaviour, increase their health, etc.

Examples: bank transactions, home energy usage, fitness or sleep tracker, order history with an online service, location tracker, health records

The Social Graph

The Social Graph is a dataset that describes the relationships between a group of individuals. It is typically built-up by a small number of contributions made by individuals that provide information about their relationships and connections to others. They may also provide information about those other people, e.g. names, contact numbers, service ratings, etc. When published or exported it is typically focused on a single individual, but might be available in aggregate. It is different to Personal Records as its specifically about multiple people, rather than a history of information about an individual (although Personal Records may reference or include data about others).  The graph as a whole is maintained by an organisation that is operating a social network (or service that has social features).

Examples: social networks data, collaboration graphs, reviews and trip histories from ride sharing services, etc

The Observatory

The Observatory is a very large dataset produce by a coordinated large-scale data collection exercise, for example by a range of earth observation satellites. The data collection is intentionally designed to support a variety of down-stream uses, which informs the scale and type of data collected. The scale and type of data can makes it difficult to use because of the need for specific tools or expertise. But there are a wide range of ways in which the raw data can be processed to create other types of data products, to drive a variety of analyses, or used to power a variety of services.  It is refreshed and re-released as required by the needs and financial constraints of the organisations collaborating on collecting and using the dataset.

Examples: earth observation data, LIDAR point clouds, data from astronomical surveys or Large Hadron Collider experiments

The Forecast

The Forecast is used to predict the outcome of specific real-world events, e.g. a weather or climate forecast. It draws on a variety of primary datasets which are then processed and anlysed to produce the output dataset. The process by which the predictions are made are well-documented to provide insight into the quality of the output. As the predictions are time-based the dataset has a relatively short “shelf-life” which means that users need to quickly access the most recent data for a specific location or area of interest. Depending on the scale and granularity, Forecast datasets can be very large, making them difficult to distribute in a timely manner.

Example: weather forecasts

Let me know what you think of these. Do they provide any useful perspective? How would you use or improve them?

One thought on “How can we describe different types of dataset? Ten dataset archetypes

  1. Hi Leigh – have been involved in an effort in W3C to look at describing characteristics of datasets by profile – one could imagine a series of high level profiles for each of these archetypes – where perhaps each creates a constraint that specific profiles describe specific aspects – for example that a statistical index declares its dimensions using SDMX terms.

    In general, I think you could probably characterise these archetypes by dimensions (in the statistical sense) – see QB4ST (https://www.w3.org/TR/qb4st/) for some examples of spatio-temporal dimensions.

    I think that “timeseries” is an important archetype that is not obviously fitted into the current list of definitions – and “locus” – such as a path in space and time (such as a bike ride record). You could generalise sensor feed description – but the distinction between an archive with a time dimension and a current state might be the blocker there.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.