Lets talk about plugs

This is a summary of a short talk I gave internally at the ODI to help illustrate some of the important aspects of data standards for non-technical folk. I thought I’d write it up here too, in case its useful for anyone else. Let me know what you think.

We benefit from standards in every aspect of our daily lives. But because we take them for granted, we don’t tend to think about them very much. At the ODI we’re frequently talking about standards for data which, if you don’t have a technical background, might be even harder to wrap your heard around.

A good example can help to illustrate the value of standards. People frequently refer to telephone lines, railway tracks, etc. But there’s an example that we all have plenty of personal experience with.

Lets talk about plugs!

You can confidently plug any of your devices into a wall socket and it will just work. No thought required.

Have you ever thought about what it would be like if plugs and wall sockets were all different sizes and shapes?

You couldn’t rely on being able to consistently plug your device into any random socket, so you’d have to carry around loads of different cables. Manufacturers might not design their plugs and sockets very well so there might be greater risks of electrocution or fires. Or maybe the company that built your new house decided to only fit a specific type of wall socket because its agree a deal with an electrical manufacturer, so when you move in you needed to buy a completely new set of devices.

We don’t live in that world thankfully. As a nation we’ve agreed that all of our plugs should be designed the same way.

That’s all a standard is. A documented, reusable agreement that everyone uses.

Notice that a single standard, “how to design a really great plug“, has multiple benefits. Safety is increased. We save time and money. Manufacturers can be confident that their equipment will work in any home or office.

That’s true of different standards too. Standards have economic, policy, technical and social impacts.

Open up a UK plug and it looks a bit like this.

Notice that there are colours for different types of wires (2, 3, 4). And that fuses (5) are expected to be the same size and shape. Those are all standards too. The wiring and voltages are standardised too.

So the wiring, wall sockets and plugs in your house are designed affording to a whole family of different standards, that are designed to work with one another.

We can design more complex systems from smaller standards. It helps us make new things faster, because we are reusing existing work.

That’s a lot of time and agreement that we all benefit from. Someone somewhere has invested the time and energy into thinking all of that through. Lucky us!

When we visit other countries, we learn that their plugs and sockets are different. Oh no!

That can be a bit frustrating, and means we have to spend a bit more money and remember to pack the right adapters. It’d be nice if the whole world agreed on how to design a plug. But that seems unlikely. It would cost a lot of time and money in replacing wiring and sockets.

But maybe those different designs are intentional? Perhaps there are different local expectations around safety, for example. Or in what devices people might be using in their homes. There might be reasons why different communities choose to design and adopt slightly different standards. Because they’re meeting slightly different needs. But sometimes those differences might be unnecessary. It can be hard to tell sometimes.

The people most impacted by these differences aren’t tourists, its the manufacturers that have to design equipment to work in different locations. Which is why your electrical devices normally has a separate cable. So, depending on whether you travel or whether you’re a device manufacturer you’ll have different perceptions of how much a problem that is.

All of the above is true for data standards.

Standards for data are agreements that help us collect, access, share, use and publish data in consistent ways.  They have a range of different impacts.

There are lots of different types of standard and we combine them together to create different ways to successfully exchange data. Different communities often have their own standards for similar things, e.g. for describing metadata or accessing data via an API.

Sometimes those are simple differences that an adapter can easily fix. Sometimes those differences are because the standards are designed to meet different needs.

Unfortunately we don’t live in a world of standardised data plugs and wires and fuses. We live in that other world. The one where its hard to connect one thing to another thing. Where the stuff coming down the wires is completely unexpected. And we get repeated shocks from accidental releases of data.

I guarantee that in every user research, interview, government consultation or call for evidence, people will be consistently highlighting the need for more standards for data. People will often say this explicitly, “We need more standards!”. But sometimes they refer to the need in other ways: “We need make data more discoverable!” (metadata standards) or “We need to make it easier to safely release data!” (standardised codes of practice).

Unfortunately that’s not always that helpful because when you probe a little deeper you find that people are talking about lots of different things. Some people want to standardise the wiring. Others just want to agree on a voltage. While others are still debating the definition of “fuse”. These are all useful and important things. You just need to dig a little deeper to find the most useful place to start.

Its also not always clear whose job it is to actually create those standards. Because we take standards for granted, we’re not always clear about how they get created. Or how long it takes and what process to follow to ensure they’re well designed.

The reason we published the open standards for data guidebook was to help communities get started in designing the standards they need.

Standards development needs time and investment, as someone somewhere needs to do the work of creating them. That, as ever, is the really hard part.

Standards are part of the data infrastructure that help us unlock value from data. We need to invest in creating and maintaining them like we do other parts of our infrastructure.

Don’t just listen to me, listen to some of the people who’ve being creating standards for their communities.

The words we use for data

I’ve been on leave this week so, amongst the gardening and relaxing I’ve had a bit of head space to think.  One of the things I’ve been thinking about is the words we choose to use when talking about data. It was Dan‘s recent blog post that originally triggered it. But I was reminded of it this week after seeing more people talking past each other and reading about how the Guardian has changed the language it uses when talking about the environment: Climate crisis not climate change.

As Dan pointed out we often need a broader vocabulary when talking about data.  Talking about “data” in general can be helpful when we want to focus on commonalities. But for experts we need more distinctions. And for non-experts we arguably need something more tangible. “Data”, “algorithm” and “glitch” are default words we use but there are often better ones.

It can be difficult to choose good words for data because everything can be treated as data these days. Whether it’s numbers, text, images or video everything can be computed on, reported and analysed. Which makes the idea of data even more nebulous for many people.

In Metaphors We Live By, George Lakoff and Mark Johnson discuss how the range of metaphors we use in language, whether consciously or unconsciously, impacts how we think about the world. They highlight that careful choice of metaphors can help to highlight or obscure important aspects of the things we are discussing.

The example that stuck with me was that when we are describing debates. We often do so in terms of things to be won, or battles to be fought (“the war of words”). What if we thought of debates as dances instead? Would that help us focus on compromise and collaboration?

This is why I think that data as infrastructure is such a strong metaphor. It helps to highlight some of the most important characteristics of data: that it is collected and used by communities, needs to be supported by guidance, policies and technologies and, most importantly, needs to be invested in and maintained to support a broad variety of uses. We’ve all used roads and engaged with the systems that let us make use of them. Focusing on data as information, as zeros and ones, brings nothing to the wider debate.

If our choice of metaphors and words can help to highlight or hide important aspects of a discussion, then what words can we use to help focus some of our discussions around data?

It turns out there’s quite a few.

For example there are “samples” and “sampling“.  These are words used in statistics but their broader usage has the same meaning. When we talk about sampling something, whether its food or drink, music or perfume it’s clear that we’re not taking the whole thing. Talking about sampling might help us be to clearer that often when we’re collecting data we don’t have the whole picture. We just have a tester, a taste. Hopefully one which is representative of the whole. We can make choices about when, where and how often we take samples.  We might only be allowed to take a few.

Polls” and “polling” are similar words. We sample people’s opinions in a poll. While we often use these words in more specific ways, they helpfully come with some understanding that this type of data collection and analysis is imperfect. We’re all very familiar at this point with the limitations of polls.

Or how about “observations” and “observing“?  Unlike “sensing” which is a passive word, “observing” is more active and purposeful. It implies that someone or something is watching. When we want to highlight that data is being collected about people or the environment “taking observations” might help us think about who is doing the observing, and why. Instead of “citizen sensing” which is a passive way of describing participatory data collection, “citizen observers” might place a bit more focus on the work and effort that is being contributed.

Catalogues” and “cataloguing” are words that, for me at least, imply maintenance and value-added effort. I think of librarians cataloguing books and artefacts. “Stewards” and “curators” are other important roles.

AI and Machine Learning are often being used to make predictions. For example, of products we might want to buy, or whether we’re going to commit a crime. Or how likely it is that we might have a car accident based on where we live. These predictions are imperfect. But we talk about algorithms as “knowing”, “spotting”, “telling” or “helping”. But they don’t really do any of those things.

What they are doing is making a “forecast“. We’re all familiar with weather forecasts and their limits. So why not use the same words for the same activity? It might help to highlight the uncertainty around the uses of the data and technology, and reinforce the need to use these forecasts as context.

In other contexts we talk about using data to build models of the world. Or to build “digital twins“. Perhaps we should just talk more about “simulations“? There are enough people playing games these days that I suspect there’s a broader understanding of what a simulation is: a cartoon sketch of some aspect of the real world that might be helpful but which has its limits.

Other words we might use are “ratings” and “reviews” to help to describe data and systems that create rankings and automated assessments. Many of us have encountered ratings and reviews and understand that they are often highly subjective and need interpretation?

Or how about simply “measuring” as a tangible example of collecting data? We’ve all used a ruler or measuring tape and know that sometimes we need to be careful about taking measurements: “Measure twice, cut once”.

I’m sure there are lots of others. I’m also well aware that not all of these terms will be familiar to everyone. And not everyone will associate them with things in the same way as I do. The real proof will be testing words with different audiences to see how they respond.

I think I’m going to try to deliberately use a broad range of language in my talks and writing and see how it fairs.

What terms do you find most useful when talking about data?

How can we describe different types of dataset? Ten dataset archetypes

As a community, when we are discussing recommendations and best practices for how data should be published and governed, there is a natural tendency for people to focus on the types of data they are most familiar with working with.

This leads to suggestions that every dataset should have an API, for example. Or that every dataset should be available in bulk. While good general guidance, those approaches aren’t practical in every case. That’s because we also need to take into account a variety of other issues, including:

  • the characteristics of the dataset
  • the capabilities of the publishing organisation and the funding their have available
  • the purpose behind publishing the data
  • and the ethical, legal and social contexts in which it will be used

I’m not going to cover all of that in this blog post.

But it occurred to me that it might be useful to describe a set of dataset archetypes, that would function a bit like user personas. They might help us better answer some of the basic questions people have around data, discuss recommendations around best practices, inform workshop exercises or just test our assumptions.

To test this idea I’ve briefly described ten archetypes. For each one I’ve tried to describe some it’s features, identified some specific examples, and briefly outlined some of the challenges that might apply in providing sustainable access to it.

Like any characterisation detail is lost. This is not an exhaustive list. I haven’t attempted to list every possible variation based on size, format, timeliness, category, etc. But I’ve tried to capture a range that hopefully illustrate some different characteristics. The archetypes reflect my own experiences, you will have different thoughts and ideas. I’d love to read them.

The Study

The Study is a dataset that was collected to support a research project. The research group collected a variety of new data as part of conducting their study. The dataset is small, focused on a specific use case and there are no plans to maintain or update it further as the research group does not have any ongoing funded to collect or maintain the dataset. The data is provided as is for others to reuse, e.g. to confirm the original analysis of the data or to use it on other studies. To help others, and as part of writing some academic papers that reference the dataset, the research group has documented their methodology for collecting the data. The dataset is likely published in an academic data portal or alongside the academic papers that reference it.

Examples: water quality samples, field sightings of animals, laboratory experiment results, bibliographic data from a literature review, photos showing evidence of plant diseases, consumer research survey results

The Sensor Feed

The Sensor Feed is a stream of sensor readings that are produced by a collection of sensors that have been installed across a city. New readings are added to the stream at regular intervals. The feed is provided to allow a variety of applications to tap into the raw sensor readings.. The data points are as directly reported by the individual sensors and are not quality controlled. The individual sensors may been updated, re-calibrated or replaced over time. The readings are part of the operational infrastructure of the city so can be expected to be available over at least the medium term. This mean the dataset is effectively unbounded: new observations will continue to be reported until the infrastructure is decommissioned.

Examples: air quality readings, car park occupancy, footfall measurements, rain gauges, traffic light queuing counts, real-time bus locations

The Statistical Index

The Statistical Index is intended to provide insights into the performance of specific social or economic policies by measuring some aspect of a local community or economy. For example a sales or well-being index. The index draws on a variety of primary datasets, e.g. on commercial activities, which are then processed according to a documented methodology to generate the index. The Index is stewarded by an organisation and is expected to be available over the long term. The dataset is relatively small and is reported against specific geographic areas (e.g. from The Register) to support comparisons. The Index is updated on a regular basis, e.g. monthly or annually. Use of the data typically involves comparing across time and location at different levels of aggregation.

Examples: street safety survey, consumer price indices, happiness index, various national statistical indexes

The Register

The Register is a set of reference data that is useful for adding context to other datasets. It consists of a list of specific things, e.g. locations, cars, services with an unique identifier and some basic descriptive metadata for each of the entries on the list. The Register is relatively small, but may grow over time. It is stewarded by an organisation tasked with making the data available for others. The steward, or custodian, provides some guarantees around the quality of the data.  It is commonly used as a means to link, validate and enrich other datasets and is rarely used in isolation other than in reporting on changes to the size and composition of the register.

Examples: licensed pubs, registered doctors, lists of MOT stations, registered companies, a taxonomy of business types, a statistical geography, addresses

The Database

The Database is a copy or extract of the data that underpins a specific application or service. The database contains information about a variety of different types of things, e.g. musicians, the albums and songs. It is a relatively large dataset that can be used to perform a variety of different types of query and to support a variety of uses. As it is used in a live service it is regularly updated, undergoes a variety of quality checks, and is growing over time in both volume and scope. Some aspects of The Database may reference one or more Registers or could be considered as Registers in themselves.

Examples: geographic datasets that include a variety of different types of features (e.g. OpenStreetMap, MasterMap), databases of music (e.g. MusicBrainz) and books (e.g. OpenLibrary), company product and customer databases, Wikidata

The Description

The Description is a collection of a few data points relating to a single entity. Embedded into a single web page, it provides some basic information about an event, or place, or company. Individually it may be useful in context, e.g. to support a social interaction or application share. The owner of the website provides some data about the things that are discussed or featured on the website, but does not have access to a full dataset. The individual item descriptions are provided by website contributors using a CRM to add content to the website. If available in aggregate, the individual descriptions might make a useful Database or Register.

Examples: descriptions of jobs, events, stores, video content, articles

The Personal Records

The Personal Records are a history of the interactions of a single person with a product or service. The data provides insight into the individual person’s activities.  The data is a slice of a larger Dataset that contains data for a larger number of people. As the information contains personal information it has to be secure and the individual has various rights over the collection and use of the data as granted by GDPR (or similar local regulation). The dataset is relatively small, is focused on a specific set of interactions, but is growing over time. Analysing the data might provide useful insight to the individual that may help them change their behaviour, increase their health, etc.

Examples: bank transactions, home energy usage, fitness or sleep tracker, order history with an online service, location tracker, health records

The Social Graph

The Social Graph is a dataset that describes the relationships between a group of individuals. It is typically built-up by a small number of contributions made by individuals that provide information about their relationships and connections to others. They may also provide information about those other people, e.g. names, contact numbers, service ratings, etc. When published or exported it is typically focused on a single individual, but might be available in aggregate. It is different to Personal Records as its specifically about multiple people, rather than a history of information about an individual (although Personal Records may reference or include data about others).  The graph as a whole is maintained by an organisation that is operating a social network (or service that has social features).

Examples: social networks data, collaboration graphs, reviews and trip histories from ride sharing services, etc

The Observatory

The Observatory is a very large dataset produce by a coordinated large-scale data collection exercise, for example by a range of earth observation satellites. The data collection is intentionally designed to support a variety of down-stream uses, which informs the scale and type of data collected. The scale and type of data can makes it difficult to use because of the need for specific tools or expertise. But there are a wide range of ways in which the raw data can be processed to create other types of data products, to drive a variety of analyses, or used to power a variety of services.  It is refreshed and re-released as required by the needs and financial constraints of the organisations collaborating on collecting and using the dataset.

Examples: earth observation data, LIDAR point clouds, data from astronomical surveys or Large Hadron Collider experiments

The Forecast

The Forecast is used to predict the outcome of specific real-world events, e.g. a weather or climate forecast. It draws on a variety of primary datasets which are then processed and anlysed to produce the output dataset. The process by which the predictions are made are well-documented to provide insight into the quality of the output. As the predictions are time-based the dataset has a relatively short “shelf-life” which means that users need to quickly access the most recent data for a specific location or area of interest. Depending on the scale and granularity, Forecast datasets can be very large, making them difficult to distribute in a timely manner.

Example: weather forecasts

Let me know what you think of these. Do they provide any useful perspective? How would you use or improve them?

Thinking about the governance of data

I find “governance” to be a tricky word. Particularly when we’re talking about the governance of data.

For example, I’ve experienced conversations with people from a public policy background and people with a background in data management, where its clear that there are different perspectives. From a policy perspective, governance of data could be described as the work that governments do to enforce, encourage or enable an environment where data works for everyone. Which is slightly different to the work that organisations do in order to ensure that data is treated as an asset, which is how I tend to think about organisational data governance.

These aren’t mutually exclusive perspectives. But they operate at different scales with a different emphasis, which I think can sometimes lead to crossed wires or missed opportunities.

As another example, reading this interesting piece of open data governance recently, I found myself wondering about that phrase: “open data governance”. Does it refer to the governance of open data? Being open about how data is governed? The use of open data in governance (e.g. as a public policy tool), or the role of open data in demonstrating good governance (e.g. through transparency). I think the article touched on all of these but they seem quite different things. (Personally I’m not sure there is anything special about the governance of open data as opposed to data in general: open data isn’t special).

Now, all of the above might be completely clear to everyone else and I’m just falling into my usual trap of getting caught up on words and meanings. But picking away at definitions is often useful, so here we are.

The way I’ve rationalised the different data management and public policy perspectives is in thinking about the governance of data as a set of (partly) overlapping contexts. Like this:

 

Governance of data as a set of overlapping contexts

 

Whenever we are managing and using data we are doing so within a nested set of rules, processes, legislation and norms.

In the UK our use of data is bounded by a number of contexts. This includes, for example: legislation from the EU (currently!), legislation from the UK government, legislation defined by regulators, best practices that might be defined how a sector operates, our norms as a society and community, and then the governance processes that apply within our specific organisations, departments and even teams.

Depending on what you’re doing with the data, and the type of data you’re working with, then different contexts might apply. The obvious one being the use of personal data. As data moves between organisations and countries, then different contexts will apply, but we can’t necessarily ignore the broader contexts in which it already sits.

The narrowest contexts, e.g. those within an organisations, will focus on questions like: “how are we managing dataset XYZ to ensure it is protected and managed to a high quality?” The broadest contexts are likely to focus on questions like: “how do we safely manage personal data?

Narrow contexts define the governance and stewardship of individual datasets. Wider contexts guide the stewardship of data more broadly.

What the above diagram hopefully shows is that data, and our use of data, is never free from governance. It’s just that the terms under which it is governed may just be very loosely defined.

This terrible sketch I shared on twitter a while ago shows another way of looking at this. The laws, permissions, norms and guidelines that define the context in which we use data.

Data use in context

One of the ways in which I’ve found this “overlapping contexts” perspective useful, is in thinking about how data moves into and out of different contexts. For example when it is published or shared between organisations and communities. Here’s an example from this week.

IBM have been under fire because they recently released (or re-released) a dataset intended to support facial recognition research. The dataset was constructed by linking to public and openly licensed images already published on the web, e.g. on Flickr. The photographers, and in some cases the people featured in those images, are unhappy about the photographs being used in this new way. In this new context.

In my view, the IBM researchers producing this dataset made two mistakes. Firstly, they didn’t give proper appreciation to the norms and regulations that apply to this data — the broader contexts which inform how it is governed and used, even though its published under an open licence. For example, e.g. people’s expectations about how photographs of them will be used.

An open licence helps data move between organisations — between contexts — but doesn’t absolve anyone from complying with all of the other rules, regulations, norms, etc that will still apply to how it is accessed, used and shared. The statement from Creative Commons helps to clarify that their licenses are not a tool for governance. They just help to support the reuse of information.

This lead to IBM’s second mistake. By creating a new dataset they took on responsibility as its data steward. And being a data steward means having a well-defined, set of data governance processes that are informed and guided by all of the applicable contexts of governance. But they missed some things.

The dataset included content that was created by and features individuals. So their lack of engagement with the community of contributors, in order to discuss norms and expectations was mistaken. The lack of good tools to allow people to remove photos — NBC News created a better tool to allow Flickr users to check the contents of the dataset — is also a shortfall in their duties. Its the combination of these that has lead to the outcry.

If IBM had instead launched an initiative similar where they built this dataset, collaboratively, with the community then they could have avoided this issue. This is the approach that Mozilla took with Voice. IBM, and the world, might even have had a better dataset as a result because people have have opted-in to including more photos. This is important because, as John Wilbanks has pointed out, the market isn’t creating these fairer, more inclusive datasets. We need them to create an open, trustworthy data ecosystem.

Anyway, that’s one example of how I’ve found thinking about the different contexts of governing data, helpful in understanding how to build stronger data infrastructure. What do you think? Am I thinking about this all wrong? What else should I be reading?

 

Talk: Tabular data on the web

This is a rough transcript of a talk I recently gave at a workshop on Linked Open Statistical Data. You can view the slides from the talk here. I’m sharing my notes for the talk here, with a bit of light editing.

At the Open Data Institute our mission is to work with companies and governments to build an open trustworthy data ecosystem. An ecosystem in which we can maximise the value from use of data whilst minimising its potential for harmful impacts.

An important part of building that ecosystem will be ensuring that everyone — including governments, companies, communities and individuals — can find and use the data that might help them to make better decisions and to understand the world around them

We’re living in a period where there’s a lot of disinformation around. So the ability to find high quality data from reputable sources is increasingly important. Not just for us as individuals, but also for journalists and other information intermediaries, like fact-checking organisations.

Combating misinformation, regardless of its source, is an increasingly important activity. To do that at scale, data needs to be more than just easy to find. It also needs to be easily integrated into data flows and analysis. And the context that describes its limitations and potential uses needs to be readily available.

The statistics community has long had standards and codes of practice that help to ensure that data is published in ways that help to deliver on these needs.

Technology is also changing. The ways in which we find and consume information is evolving. Simple questions are now being directly answered from search results, or through agents like Alexa and Siri.

New technologies and interfaces mean new challenges in integrating and using data. This means that we need to continually review how we are publishing data. So that our standards and practices continue to evolve to meet data user needs.

So how do we integrate data with the web? To ensure that statistics are well described and easy to find?

We’ve actually got a good understanding of basic data user needs. Good quality metadata and documentation. Clear licensing. Consistent schemas. Use of open formats, etc, etc. These are consistent requirements across a broad range of data users.

What standards can help us meet those needs? We have DCAT and Data Packages. Schema.org Dataset metadata, and its use in Google dataset search, now provides a useful feedback loop that will encourage more investment in creating and maintaining metadata. You should all adopt it.

And we also have CSV on the Web. It does a variety of things which aren’t covered by some of those other standards. It’s a collection of W3C Recommendations that:

The primer provides an excellent walk through of all of the capabilities and I’d encourage you to explore it.

One of the nice examples in the primer shows how you can annotate individual cells or groups of cells. As you all know this capability is essential for statistical data. Because statistical data is rarely just tabular: it’s usually decorated with lots of contextual information that is difficult to express in most data formats. Users of data need this context to properly interpret and display statistical information.

Unfortunately, CSV on the Web is still not that widely adopted. Even though its relatively simple to implement.

(Aside: several audience members noted they are using it internally in their data workflows. I believe the Office of National Statistics are also moving to adopt it)

This might be because of a lack of understanding of some of the benefits it provides. Or that those benefits are limited in scope.

There also aren’t a great many tools that support CSV on the web currently.

It might also be that actually there’s some other missing pieces of data infrastructure that are blocking us from making best use of CSV on the Web and other similar standards and formats. Perhaps we need to invest further in creating open identifiers to help us describe statistical observations. E.g. so that we can clearly describe what type of statistics are being reported in a dataset?

But adoption could be driven from multiple angles. For example:

  • open data tools, portals and data publishers could start to generate best practice CSVs. That would be easy to implement
  • open data portals could also readily adopt CSV on the Web metadata, most already support DCAT
  • standards developers could adopt CSV on the Web as their primary means of defining schemas for tabular formats

Not everyone needs to implement or use the full set of capabilities. But with some small changes to tools and processes, we could collectively improve how tabular data is integrated into the web.

Thanks for listening.

Creating better checklists, a short review of the Checklist Manifesto

I’ve just finished reading The Checklist Manifesto by Atul Gawande (Cancer Research UK affiliate link). It’s been on my reading list for a while. In my work I’ve written quite a few checklists to help capture best practice or to provide advice. So I was curious about whether I could learn something about creating better checklists.

I wanted to write down a few reflections whilst they’re still fresh in my mind.

The book explores the use of checklists in medicine, aviation and to a lesser extent in business. Checklists aren’t to-do lists. They are a tool to help reduce risk, uncertainty and failure. Gawande uses ample anecdotes, supported by evidence from real-world studies, to illustrate how effective a simple checklist can be. They routinely save people’s lives during surgeries and are a key contributor to the safety of modern aviation.

Gawande explains how checklists allow teams to perform better in complex situations. They protect against individual fallibility, and can help to transfer best practice and research into operational use. He explains that checklists aren’t a teaching tool. They are a means of imposing discipline on a team. Their goal is to improve outcomes.

He also explains why he thinks they’re not being used more widely. In particular, he highlights the tendency of professionals to feel like they’re being undermined or challenged when asked to use simple checklists. A “hero culture” contributes to this problem, something that is very evident in surgery. It’s also something that the tech industry struggles with as well.

Gawande explains that checklists help to address this by re-balancing power within teams. For example, by giving nurses the permission to halt a surgical procedure if a checklist hasn’t been completed to their satisfaction. A hero culture might otherwise silence the raising of concerns, or deter team members from pointing out problems as they see them.

The book highlights that a common pattern that occurs in many successful checklists are specific steps to encourage and make time for team communication. These range from simple introductions and a review of responsibilities, through to a walk-through of expected and possible outcomes. These all contribute towards making the team a more effective unit.

Throughout the book I was wondering how to transfer the insight into other areas. Gawande suggests that checklists are useful anywhere that we have multi-disciplinary teams working together on complex tasks. And specifically where those tasks might have complex outcomes that might have serious impacts.

I think there’s probably a lot of examples in the data and digital world where they might be useful.

What if teams working on data science and machine learning had “preflight checklists” that were used not just at the start of a project, but also at the time of launch and beyond? Would they help highlight problems, increase discipline and allow times for missteps or other concerns to be highlighted?

The ODI data ethics canvas, developed by Amanda Smith, Ellen Broad and Peter Wells is not quite a checklist. But it’s a similar type of tool, aiming to address some similar problems. Privacy impact assessments are another example. But perhaps there are other useful aids?

The book also raises wider questions about the approach we take in our societies towards ensuring safe outcomes of our work, research, etc. There is often too much focus on the use and application of exciting new research and technologies, and not enough on the discipline required to use them safely and effectively.

In short, are we taking care of one another in the best ways we know how?

Creating better checklists

There’s some great insight into creating checklists scattered throughout the Manifesto. But ironically, they’re not gathered together into a single list of suggestions.

So, for my own benefit I’ve jotted down some points to reflect on:

  • Checklists need to be focused. An exhaustive list of steps is not useful. Trust people know how to do their job, just ask them to confirm the most critical or important steps
  • Think about how the checklist will be used. There are READ-DO checklists (where you perform each item and check it off) and DO-CONFIRM checklists (where you carry out an activity, and then review what you have done)
  • Checklists can be used to help with both routine situations (pre-flight) and emergencies (engine failure)
  • Make the checklist easy to use. A good user experience can help embed them into routine practice
  • Consider who is leading use of the checklist. A checklist can help to balance power across a team
  • Include team communications. Teams perform better when they know each other and understand their roles. Ask them to explain what will happen and what the expected outcomes might be. This helps teams deal with items not on the checklist
  • Test and iterate the list
  • Let people customise it, so they can adapt to local use
  • Measuring success and impact (e.g. by measuring outcomes, or even just identifying where they have helped) can help encourage others to adopt it